Influence of Grid Spacing in Poisson-Boltzmann Equation Binding Energy Estimation.

نویسندگان

  • Robert C Harris
  • Alexander H Boschitsch
  • Marcia O Fenley
چکیده

Grid-based solvers of the Poisson-Boltzmann, PB, equation are routinely used to estimate electrostatic binding, ΔΔGel, and solvation, ΔGel, free energies. The accuracies of such estimates are subject to grid discretization errors from the finite difference approximation to the PB equation. Here, we show that the grid discretization errors in ΔΔGel are more significant than those in ΔGel, and can be divided into two parts: (i) errors associated with the relative positioning of the grid and (ii) systematic errors associated with grid spacing. The systematic error in particular is significant for methods, such as the molecular mechanics PB surface area, MM-PBSA, approach that predict electrostatic binding free energies by averaging over an ensemble of molecular conformations. Although averaging over multiple conformations can control for the error associated with grid placement, it will not eliminate the systematic error, which can only be controlled by reducing grid spacing. The present study indicates that the widely-used grid spacing of 0.5 Å produces unacceptable errors in ΔΔGel, even though its predictions of ΔGel are adequate for the cases considered here. Although both grid discretization errors generally increase with grid spacing, the relative sizes of these errors differ according to the solute-solvent dielectric boundary definition. The grid discretization errors are generally smaller on the Gaussian surface used in the present study than on either the solvent-excluded or van der Waals surfaces, which both contain more surface discontinuities (e.g., sharp edges and cusps). Additionally, all three molecular surfaces converge to very different estimates of ΔΔGel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate, robust, and reliable calculations of Poisson-Boltzmann binding energies

Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Accurate, robust and reliable calculations of Poisson-Boltzmann solvation energies

Developing accurate solvers for the Poisson Boltzmann (PB) model is the first step to make the PB model suitable for implicit solvent simulation. Reducing the grid size influence on the performance of the solver benefits to increasing the speed of solver and providing accurate electrostatics analysis for solvated molecules. In this work, we explore the accurate coarse grid PB solver based on th...

متن کامل

Abstract Submitted for the DFD10 Meeting of The American Physical Society A Poisson-Boltzmann solver on Non-Graded Adaptive Grid with Robin boundary conditions on Irregular Domains

Submitted for the DFD10 Meeting of The American Physical Society A Poisson-Boltzmann solver on Non-Graded Adaptive Grid with Robin boundary conditions on Irregular Domains ASDIS HELGADOTTIR, FREDERIC GIBOU, UCSB — We introduce a second-order solver for the PoissonBoltzmann equation in arbitrary geometry in two and three spatial dimensions. The Poisson-Boltzmann equation can be used to represent...

متن کامل

Isothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 2013